Recognizing Stances in Online Debates

نویسندگان

  • Swapna Somasundaran
  • Janyce Wiebe
چکیده

This paper presents an unsupervised opinion analysis method for debate-side classification, i.e., recognizing which stance a person is taking in an online debate. In order to handle the complexities of this genre, we mine the web to learn associations that are indicative of opinion stances in debates. We combine this knowledge with discourse information, and formulate the debate side classification task as an Integer Linear Programming problem. Our results show that our method is substantially better than challenging baseline methods.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recognizing Stances in Ideological On-Line Debates

This work explores the utility of sentiment and arguing opinions for classifying stances in ideological debates. In order to capture arguing opinions in ideological stance taking, we construct an arguing lexicon automatically from a manually annotated corpus. We build supervised systems employing sentiment and arguing opinions and their targets as features. Our systems perform substantially bet...

متن کامل

“We make choices we think are going to save us”: Debate and stance identification for online breast cancer CAM discussions

Patients discuss complementary and alternative medicine (CAM) in online health communities. Sometimes, patients' conflicting opinions toward CAM-related issues trigger debates in the community. The objectives of this paper are to identify such debates, identify controversial CAM therapies in a popular online breast cancer community, as well as patients' stances towards them. To scale our analys...

متن کامل

Combining CNN and BLSTM to Extract Textual and Acoustic Features for Recognizing Stances in Mandarin Ideological Debate Competition

Recognizing stances in ideological debates is a relatively new and challenging problem in opinion mining. While previous work mainly focused on text modality, in this paper, we try to recognize stances from both text and acoustic modalities, where how to derive more representative textual and acoustic features still remains the research problem. Inspired by the promising performances of neural ...

متن کامل

The effect of language complexity and group size on knowledge construction: Implications for online learning

This  study  investigated  the  effect  of  language  complexity  and  group  size  on  knowledge construction in two online debates. Knowledge construction was assessed using Gunawardena et al.’s Interaction Analysis Model (1997). Language complexity was determined by dividing the  number  of  unique  words  by  total  words.  It  refers  to  the  lexical  variation.  The  results showed  that...

متن کامل

Joint Models of Disagreement and Stance in Online Debate

Online debate forums present a valuable opportunity for the understanding and modeling of dialogue. To understand these debates, a key challenge is inferring the stances of the participants, all of which are interrelated and dependent. While collectively modeling users’ stances has been shown to be effective (Walker et al., 2012c; Hasan and Ng, 2013), there are many modeling decisions whose ram...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009